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1. Introduction

In the vibration control of flexible structures such as robot arms, boundary feedback schemes
are employed in order to damp the vibrations and dissipate energy and, thus, to achieve
stabilization. Knowing the vibration eigenspectrum is crucial to the process.
Refs. [1,2] deal with the control of the boundary value problem for a flexible robot arm which is

strongly clamped to a moving mass, and with a payload attached to the other end. A mass—in
practice, an actuator—is attached to the base, as well. The base moves along a straight line which
is perpendicular to the beam. Although the model treats motion without friction one could
include a friction term. This model is important because it is one of the two standard models for
single-link robot arms [1]. (The other is the slewing beam, which models a rotational joint at the
actuator end.) Also, it is a generalization of the roller-supported-free beam. Of the four natural,
energy-conserving boundary conditions which arise in the study of beams (clamped, pinned,
roller-supported and free), the roller-supported condition has received significantly less treatment
than the other three. Further, while the slewing beam is a generalization of the pinned-free beam,
(and the cantilever beam with payload is well studied), we have not been able to find in the
literature any other generalizations of this roller-supported condition.
While the vibration of the slewing beam has been fairly well studied, a resonant eigenfrequency

analysis of this so-called Cartesian arm has not been performed, to our knowledge. Therefore, we
investigate the vibration spectrum of this model. However, as the authors of Refs. [1,2] did not
derive the model, we first provide a derivation.
The outline of the paper is as follows. In Section 2 we present the model, which consists of an

Euler–Bernoulli beam, with the motions of the masses at each end, as well as the rotational
motion of the payload (but not of the beam itself) taken into account. It is shown that the model
treated in Refs. [1,2] is indeed correct, given a somewhat limiting restriction. In Section 3, we give
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a brief derivation of the equation for the exact eigenvalues/eigenfunctions, and we discuss various
limiting behaviors of the arm, vis-a-vis the classical Euler–Bernoulli beam. As this transcendental
equation is highly non-linear and, as a result, not easy to solve using numerical methods—in
particular, it is quite sensitive to the choice of initial guess, and the errors are quite large for the
larger eigenvalues—we apply, in Section 4, an asymptotic method due to Keller and Rubinow [3]
to the problem. Although, of course, still non-linear, the resulting eigenvalue equation is much
better behaved than the exact equation. As a result, we may use these wave results to suggest
values for the initial guess in solving the exact equation, and as an obvious comparison for these
results.
Finally, we present actual results in Section 5. We compute the eigenspectrum and plot the

eigenfunctions for two sets of data found in Refs. [4,5] (although, as this model seems to be
somewhat new, the only data we could find was from references treating the slewing beam). In
each case there is good agreement between the exact and the wave results and, asymptotically,
between these results and those of the corresponding Euler–Bernoulli beam. We then investigate
the behavior of the spectrum and eigenfunctions as the mass at each end varies from zero to
‘‘infinity.’’

2. Derivation of the equations of motion

We consider the Cartesian robot arm illustrated in Fig. 1. It consists of an actuator at the left
end, a flexible beam of length L and uniform linear mass density r; and a payload at the right end.
In addition, the left end is roller-supported, in other words, it is strongly clamped to a roller,
which is free to move vertically without friction.
We set the problem in the inertial reference frame x0–y0; while the non-inertial frame x–w is

such that the left end of the beam is located at the origin, the undeflected beam lies along the
x-axis, and the w- and y0-axis coincide (Fig. 1).
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Fig. 1. The Cartesian flexible manipulator.
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Except for the behavior of the left and right ends, we assume that the beam is an
Euler–Bernoulli (EB) beam. Therefore, the arm moves in a horizontal plane and deflects only
transversally. The latter implies that the x- and x0-co-ordinates of any point along the beam
remain identical.
We have, then, wðx; tÞ; the deflection of the beam; y ¼ yðtÞ; the vertical motion of the left end of

the beam and FðtÞ; the applied vertical force at the actuator. In addition we have the physical
constants m; the mass of actuator; M; the mass of payload; r; the linear mass density of the beam;
EI ; the stiffness of the beam and J; the inertia of the mass at the right end of the beam (with
respect to x0 ¼ y0 ¼ 0).
The EB assumption implies that w{L: In addition, we shall need to assume that y{L below

(a fairly restrictive assumption).
We now derive the Lagrangian for the motion of the arm, in terms of the function zðx; tÞ ¼

wðx; tÞ þ yðtÞ: The kinetic energy at any time t; due to the motion of the left end, is

T1 ¼ 1
2

m ’yðtÞ2 ¼ 1
2
m’zð0; tÞ2:

That of the beam is

T2 ¼ 1
2
r
Z L

0

½ ’wðx; tÞ þ ’yðtÞ�2 dx ¼ 1
2
r
Z L

0

’zðx; tÞ2 dx;

while for the payload we must consider both vertical and rotational motion:

T3 ¼ 1
2

M½ ’wðL; tÞ þ ’yðtÞ�2 ¼ 1
2

M ’zðL; tÞ2

and

T4 ¼ 1
2

J
d

dt
tan�1

wðL; tÞ þ yðtÞ
L

� �� �� �2

¼ 1
2

J
d

dt
tan�1

zðL; tÞ
L

� �� �� �2

:

Here, if we assume that y(t) is small, then z(L,t) is small and

tan�1
zðL; tÞ

L

� �
E

zðL; tÞ
L

which, in turn, can be written as

zðL; tÞ
L

EzxðL; tÞ:

It follows that

T4 ¼ 1
2

J ’zxðL; tÞ
2:

The potential energy due to the elastic deformation of the beam is the standard expression

V ¼ 1
2

EI

Z L

0

½wxxðx; tÞ�2 dx ¼ 1
2

EI

Z L

0

½zxxðx; tÞ�2 dx;

while the work due to the non-conservative force F is

W ¼ F ðtÞ½wð0; tÞ þ yðtÞ� ¼ F ðtÞyðtÞ ¼ F ðtÞzð0; tÞ:
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Using Hamilton’s principle we derive the equations of motion. Our system of equations consists
of the PDE:

r.z þ EIzxxxx ¼ 0 ð1Þ

with the left-end boundary conditions

zxð0; tÞ ¼ 0; ð2Þ

FðtÞ � EIzxxxð0; tÞ � m.zð0; tÞ ¼ 0 ð3Þ

and the right-end boundary conditions

EIzxxxðL; tÞ � M .zðL; tÞ ¼ 0; ð4Þ

EIzxxðL; tÞ þ J .zxðL; tÞ ¼ 0: ð5Þ

3. ‘‘Exact’’ solution of the system

As we wish to compute the natural vibration frequencies of system (1)–(5), we set F ðtÞ � 0: In
Ref. [2], it was proved that the eigenvalues are non-negative real numbers, so we may separate
variables by letting

zðx; tÞ ¼ eik
2tfðxÞ;

leading to the system

a4k4fðxÞ � fð4ÞðxÞ ¼ 0; ð6Þ

f0ð0Þ ¼ 0; ð7Þ

EIf000ð0Þ � mk4fð0Þ ¼ 0; ð8Þ

EIf000ðLÞ þ Mk4fðLÞ ¼ 0; ð9Þ

EIf00ðLÞ � Jk4f0ðLÞ ¼ 0: ð10Þ

Here, a4 ¼ r=ðEIÞ: The general solution to ODE (6) is

fðxÞ ¼ c1 cosðakxÞ þ c2 sinðakxÞ þ c3 coshðakxÞ þ c4 sinhðakxÞ: ð11Þ

Applying the boundary conditions (7)–(10) leads to a linear system of the form

A½c1; c2; c3; c4�T ¼ ½0; 0; 0; 0�T

which has a non-trivial solution if and only if

detA ¼ 0:
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The characteristic equation is

mMJk5ðc 
 ch � 1Þ þ EIa3ðm þ MÞJk4ðs 
 ch þ c 
 shÞ

þ 2E2I2a6Jk3s 
 sh þ EIamMk2ðs 
 ch � c 
 shÞ

� 2E2I2a4Mkc 
 ch � E2I2a4mkðc 
 ch þ 1Þ

� a7E3I3ðs 
 ch þ c 
 shÞ ¼ 0; ð12Þ

where s ¼ sinðakLÞ; c ¼ cosðakLÞ; sh ¼ sinhðakLÞ and ch ¼ coshðakLÞ:
We note that Eq. (12) reduces to what we would expect in the following situations:

m ¼ M ¼ J ¼ 0: s 
 ch þ c 
 sh ¼ 0 ðR–F EB beamÞ;

m ¼ 0;M; J-N: s 
 ch þ c 
 sh ¼ 0 ðR–C EB beamÞ;

m-N;M ¼ J ¼ 0: c 
 ch þ 1 ¼ 0 ðC–F EB beamÞ;

m;M; J-N: c 
 ch � 1 ¼ 0 ðC–C EB beamÞ: ð13Þ

Here, C stands for ‘‘clamped’’, F for ‘‘free’’ and R for ‘‘roller-supported’’. We investigate this
behavior in Section 5.
More interesting is the asymptotic behavior of the spectrum, i.e., as k-N:

m;M; Ja0: Bc 
 ch � 1 ¼ 0 ðC–C or F–F EB beamÞ;

m ¼ 0;M; Ja0: Bs 
 ch þ c 
 sh ¼ 0 ðR–C or R–F EB beamÞ;

ma0;M ¼ J ¼ 0: Bc 
 ch þ 1 ¼ 0 ðC–F EB beamÞ;

m ¼ M ¼ J ¼ 0: Bs 
 ch þ c 
 sh ¼ 0 ðR–C or R–F EB beamÞ: ð14Þ

Case 3 in Eq. (14) suggests that, if the mass at an end is non-zero, then that end’s asymptotic
behavior is the same as if were clamped. This implies that Case 1 corresponds to C–C and Case 2
to R–C.
It is very interesting that we seem to get a sort of bifurcation in the asymptotic spectrum when

the mass at an end goes from zero to non-zero. In particular, if m ¼ 0; the left end is R but if we let
ma0; no matter how small, the end behaves asymptotically as though it were C. We investigate
this behavior, as well, in Section 5 in Fig. 2.
Now, we can use a numerical method on Eq. (12) in order to compute the spectrum for the

Cartesian arm. However, the highly non-linear nature of Eq. (12) makes it quite difficult to
capture the full spectrum, as the results depend very sensitively on the initial guess.
Instead, we first shall use an asymptotic method to compute the spectrum. Then, we shall use

these asymptotic results to inform us as to what we should expect to find for the roots of Eq. (12)
and to provide us with initial guesses so that we may find all the roots.

4. Asymptotic estimation of the spectrum

We choose to apply an asymptotic wave method of Keller and Rubinow [3,6] to the problem,
because it has given accurate results in other beam and plate problems (Refs. [7–11]), and because
it is directly constructive (thereby enabling us to compute the eigenfunctions as well). To this end,
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we form the wave solution

zðx; tÞ ¼ e�ik
2t½Ae�ikax þ Beikax þ Ce�akx þ De�kaðL�xÞ� ð15Þ

of system (1) and apply boundary conditions (2)–(5) to this solution. The conditions given in
Eqs. (2) and (3) lead to the left-end reflection relation

1 0

1 0

" #
C

D

" #
¼

�i i

iEIa3�mk
EIa3þmk

� iEIa3þmk
EIa3þmk

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R1

A

B

" #
:
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Fig. 2. The eigenfunctions corresponding to the 3rd, 6th, 9th and 12th exact frequencies from Example 2 with

(a) m ¼ 0:1 and M ¼ 0; (b) m ¼ 0 and M ¼ 0:1 and (c) m ¼ M ¼ 0:1:
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Similarly the conditions given by Eqs. (4) and (5) give us the right-end reflection relation

0 1

0 1

" #
C

D

" #
¼

EIa�ik3J
EIa�k3J

EIaþik3J
EIa�k3J

� iEIa3þMk
EIa3þMk

iEIa3�Mk
EIa3þMk

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R2

e�ikaL 0

0 eikaL

" #
A

B

" #
:

We note that detR2a0 and detR1 ¼ 03k ¼ 0: It follows that

eikaL 0

0 e�ikaL

" #
R�1
2

0 1

0 1

" #
� R�1

1

1 0

1 0

" #( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R3

C

D

" #
¼

0

0

" #
: ð16Þ

Finally, Eq. (16) has non-trivial solutions if and only detR3 ¼ 0 which, after much

simplification, leads to

f1ðkÞ cosðkaLÞ � f2ðkÞ sinðkaLÞ ¼ 0; ð17Þ

where

f1ðkÞ ¼ E3I3a7 þ E2I2a4ð2M þ mÞk þ EIamMk2 � EIa3ðm þ MÞJk4 � mMJk5

and

f2ðkÞ ¼ �E3I3a7 þ mEIaMk2 þ 2E2I2a6Jk3 þ EIa3ðm þ MÞJk4:

We note that if we let k-N in Eq. (17), the results agree with the asymptotic results found
earlier in Eq. (14). We solve Eq. (17) by rewriting it as

�kaL þ tan�1
f1ðkÞ
f2ðkÞ

� �
þ np ¼ 0; nAZ: ð18Þ

5. Results and comparisons

We begin our computational work by considering two examples which involve data found in
the literature. However, as we have not found any data for this Cartesian manipulator, the data
we select is from Refs. [4,5], each of which studies the slewing beam. Therefore, some minor
adjustments have been necessary. Let us note here that, although we do not list it below, it is easy
to show that k ¼ 0 always is an eigenvalue, with constant eigenfunction. This represents a rigid
body motion, of course.
In each case, we apply the IMSL routine DNEQF [12], which uses the Levenberg–Marquardt

algorithm, to the characteristic equation (12) and to the wave method equation (18). For each
root k; DNEQF measures the error as ½gðkÞ�2; where gðkÞ is the left side of the equation being
solved. As a rule, we find that the errors involved in solving Eq. (12) usually are very small for the
first few (usually two) eigenvalues, after which the error increases rapidly. This is to be expected
given that expðaklÞ appears many times in that equation. As for the wave method equation (18),
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the errors generally are quite small for all of the eigenvalues computed—the one glaring exception
that shows up in some cases (as mentioned below) is in the computation of the lowest eigenvalue,
a common occurrence when using such asymptotic methods. In these cases, we believe that we are
safe in assuming that the ‘‘exact’’ solution is correct, given that the error is quite small. However,
we presumably may apply a perturbation method to the wave method results, as in Ref. [11], to
obtain better agreement.
We also provide the solutions for the corresponding EB beams as mentioned in Eq. (14). These

frequencies were computed using the Legendre-tau spectral method, which entails separating
wðx; tÞ ¼ eltfðxÞ and expressing f as a truncated series of Legendre polynomials,

fðxÞ ¼
Xn

i¼0

anPnðxÞ:

The eigenvalue problem is solved using the IMSL routine DGVRG [12]. In each case, we have
used n ¼ 100 and, comparing results for n ¼ 100 and 102, all results converge to at least four
decimal places. These results agree well with those appearing elsewhere in the literature (e.g., in
Ref. [13]; however, we have not found any results for beams subject to the roller-supported
boundary condition at either end).
Finally, all figures were done using MATLAB.
Our first example (Example 1) considers the data found in Ref. [4]. Here, E ¼ 2:1� 1010 N=m2;

I ¼ 1:167� 10�11 m4; L ¼ 0:7 m and r ¼ 2:97 kg=m: Also, as Ref. [4] takes the mass of the
payload to be 0:117 kg; we use this value for the masses m and M: Specifically, Table 1 provides
the spectra for the above data and for the following values of the masses: (a) m ¼ 0:117; M ¼ 0
and (b) m ¼ 0; M ¼ 0:117: In each case we compute the first 10 eigenvalues k; along with the 20th,
30th, 40th and 50th eigenvalues to show the convergence.
So, in Table 1(a), we compare the exact frequencies in column 1 with the wave frequencies in

column 2 and the frequencies for the clamped–free EB beam in column 3. In addition, we provide
in parentheses the corresponding errors. We include only ‘‘small’’ errors, and we have arbitrarily
chosen to list only errors which are approximately 1 or smaller. (However, it is interesting to note,
for example, that in computing the fourth exact eigenvalue, one initial guess leads to a value of
15.7256 with an error of about 31, while a different initial guess gives us 15.7258 with an error
greater than 150,000. This is a common occurrence with these exact computations.) From Table
1(a), along with the inspection of the eigenfunctions, it seems that both methods capture the full
spectrum. We have good agreement between the two methods and, asymptotically, between each
and the corresponding C–F EB beam. We have similar results in Table 1(b).
For Example 2 we use the data provided by Ref. [5]: E ¼ 6:9� 1010 N=m2; I ¼ 8:31934�

10�11 m4; L ¼ 1:0 m and r ¼ 0:233172 kg=m: Again, Ref. [5] treats the slewing beam, and treats
only the case where the mass of the payload is zero. Here, we provide the eigenmodes for the
Cartesian beam in Fig. 1 with the above data and with the following values for the masses: (a)
m ¼ 0:1; M ¼ 0; (b) m ¼ 0; M ¼ 0:1 and (c) m ¼ M ¼ 0:1:
Now, we suggested earlier that if a mass is non-zero, then that end should behave,

asymptotically, as though it were clamped. Indeed, this statement is borne out by Fig. 2. In
particular, if we look at Fig. 2(c), we see that, only after 12 modes, the eigenfunctions are close to
that of the C–C EB beam.
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Lastly, we would like to investigate the behavior of the Cartesian manipulator as the masses
vary from small to large. So for Table 2, we have chosen each of the beam constants to be unity:
E ¼ 1:0 N=m2; I ¼ 1:0 m4; L ¼ 1:0 m; r ¼ 1:0 kg=m: (We note that these choices are physically
realistic, as these values of EI ; L and r are of the same order as in the previous examples.)
For Table 2, we set M ¼ 0 and we list the first eight frequencies for various values of m; from

m ¼ 0 (R–F) to, presumably, m ¼ N (C–F). Indeed, we see that as m increases, the frequencies
decrease monotonically from those of the R–F EB beam to those of the C–F EB beam. (We have
checked numerous other values of m; and they have not contradicted this statement. The wave
results agree, as well.)
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Table 1

Comparison of the first 10 frequencies, along with the 20th, 30th, 40th and 50th frequencies, for the Cartesian

manipulator with data given by Example 1, and with (a) m ¼ 0:117 and M ¼ 0 and (b) m ¼ 0 and M ¼ 0:117

(a) Exact (error) Wave (error) C–F

3.16193 (1.2E�10) 3.05374 (2.5E�16) 2.55502

7.31150 (1.2E�4) 7.04942 (5.9E�16) 6.39617

11.5139 (1.0) 11.1085 (8.6E�13) 10.7029

15.7256 15.2511 (1.7E�13) 14.9825

19.9471 19.4489 (6.4E�18) 19.2633

24.1767 23.6782 (2.6E�14) 23.5440

28.4128 27.9257 (2.1E�13) 27.8248

32.6545 32.1838 (4.5E�13) 32.1055

36.9007 36.4487 (6.0E�13) 36.3863

41.1509 40.7179 (6.5E�13) 40.6670

? ? ?
(20th) 83.7753 83.4872 (1.2E�13) 83.4725

(30th) 126.499 126.287 (3.1E�24) 126.565

(40th) 169.259 169.092 (2.8E�23) 169.096

(50th) 212.036 211.899 (2.9E�23) 211.898

(b) Exact (error) Wave (error) R–C

2.56648 (2.6E�11) 2.54142 (1.9E�12)
4.69123(4.7E�7) 4.69095 (2.7E�16) 3.15826

8.46337 (2.1) 8.46336 (2.4E�18) 7.49828

12.6215 12.6215 (4.0E�14) 11.8505

16.8265 16.8275 (3.5E�16) 16.0531

21.0495 21.0495 (2.9E�17) 20.3342

25.2805 25.2806 (6.2E�18) 24.6146

29.5184 29.5182 (2.2E�18) 28.8953

33.7611 33.7610 (8.9E�19) 33.1761

38.0080 38.0080 (4.2E�19) 37.4568

? ? ?
(20th) 80.6110 80.6110 (1.7E�21) 80.2649

(30th) 123.323 123.323 (1.1E�21) 123.074

(40th) 166.076 166.076 (4.2E�20) 165.880

(50th) 208.848 208.848 (1.0E�19) 208.687
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11.781 11.726 11.560 11.432 11.147 11.078 11.025 11.010 11.005 10.999 10.996

14.923 14.854 14.661 14.524 14.260 14.203 14.160 14.149 14.144 14.140 14.137

18.064 17.982 17.766 17.626 17.382 17.333 17.298 17.277 17.285 17.281 17.278

21.206 21.111 20.875 20.735 20.509 20.467 20.436 20.428 20.425 20.422 20.420

24.347 24.240 23.989 23.849 23.640 23.603 23.576 23.569 23.566 23.563 23.562
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